Реферат: Логические парадоксы

Другой пример на память мне приводит:

Ведь каждый день пред нами солнце ходит,

Однако ж прав упрямый Галилей.

Действительно, согласно легенде, один из философов так и “возразил” Зенону. Зенон велел бить его палками: ведь он не собирался отрицать чувственное восприятие движения. Он говорил о его немыслимости , о том, что строгое размышление о движении приводит к неразрешимым противоречиям. Поэтому, если мы хотим избавиться от апорий в надежде, что это вообще возможно (а Зенон как раз считал, что невозможно), то мы должны прибегать к теоретическим аргументам, а не ссылаться на чувственную очевидность. Рассмотрим одно любопытное теоретическое возражение, которое было выдвинуто против апории Ахилл и черепаха .

“Представим себе, что по дороге в одном направлении движутся быстроногий Ахилл и две черепахи, из которых Черепаха-1 несколько ближе к Ахиллу, чем Черепаха-2. Чтобы показать, что Ахилл не сможет перегнать Черепаху-1, рассуждаем следующим образом. За то время, как Ахилл пробежит разделяющее их вначале расстояние, Черепаха-1 успеет уползти несколько вперед, пока Ахилл будет пробегать этот новый отрезок, она опять-таки продвинется дальше, и такое положение будет бесконечно повторяться. Ахилл будет все ближе и ближе приближаться к Черепахе-1, но никогда не сможет ее перегнать. Такой вывод, конечно же, противоречит нашему опыту, но логического противоречия у нас пока нет.

Пусть, однако, Ахилл примется догонять более дальнюю Черепаху-2, не обращая никакого внимания на ближнюю. Тот же способ рассуждения позволяет утверждать, что Ахилл сумеет вплотную приблизиться к Черепахе-2, но это означает, что он перегонит Черепаху-1. Теперь мы приходим уже к логическому противоречию”.

Здесь трудно что-либо возразить, если оставаться в плену образных представлений. Необходимо выявить формальную суть дела, что позволит перевести дискуссию в русло строгих рассуждений. Первую апорию можно свести к следующим трем утверждениям:

1. Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].

2. Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [A a1 ] [a1 a2 ] [a2 a3 ] ... [an an+1 ].

3. Поскольку бесконечная последовательность аi (1 ≤ i < ω) не имеет последней точки, невозможно завершить движение, побывав в каждой точке этой последовательности.

Проиллюстрировать полученный вывод можно по-разному. Наиболее известная иллюстрация — “самое быстрое никогда не сможет догнать самое медленное” — была рассмотрена выше. Но можно предложить более радикальную картину, в которой обливающийся потом Ахилл (вышедший из пункта А) безуспешно пытается настичь черепаху, преспокойно греющуюся на Солнце (в пункте В) и даже не думающую убегать. Суть апории от этого не меняется. Иллюстрацией тогда станет куда более острое высказывание — “самое быстрое никогда не сможет догнать неподвижное”. Если первая иллюстрация парадоксальна, то вторая — тем более.

При этом нигде не утверждается, что убывающие последовательности отрезков ai для [A B] и ai ' для [A' B'] должны быть одинаковы. Напротив, если отрезки [A B] и [A' B'] неравны по длине между собой, их разбиения на бесконечные последовательности убывающих отрезков окажутся различными. В приведенном рассуждении Ахилла отделяет от черепах 1 и 2 разные расстояния. Поэтому мы имеем два различных отрезка [A B1 ] и [A B] с общей начальной точкой А. Неравные отрезки [A B1 ] и [A B] порождают различные бесконечные последовательности точек, и недопустимо использовать одну из них вместо другой. Между тем именно эта “незаконная” операция применяется в аргументах о двух черепахам.

Если не смешивать иллюстрации и существо апории, то можно утверждать, что апории Ахилл и Дихотомия симметричны по отношению к друг другу. В самом деле, Дихотомия также водится к следующим трем утверждениям:

1. Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].

2. Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [bn+1 bn ] ... [b3 b2 ] [b2 b1 ] ... [b1 B].

3. Поскольку бесконечная последовательность bi не имеет первой точки, невозможно побывать в каждой из точек этой последовательности.

Таким образом, апория Ахилл основывается на тезисе о невозможности завершить движение из-за необходимости посетить последовательно каждую из точек бесконечного ряда, упорядоченного по типу ω (т. е. по типу порядка на натуральных числах), который не имеет последнего элемента. В свою очередь Дихотомия утверждает невозможность начала движения из-за наличия бесконечного ряда точек, упорядоченных по типу ω* (так упорядочены целые отрицательные числа), который не имеет первого элемента.

Проанализировав более тщательно две приведенные апории, мы обнаружим, что обе они опираются на допущение о непрерывности пространства и времени в смысле их бесконечной делимости . Такое допущение непрерывности отличается от современного, но имело место в древности. Без допущения тезиса о том, что любой пространственный или временной интервал можно разделить на меньшие по длине интервалы, обе апории рушатся. Зенон прекрасно это понимал. Поэтому он приводит аргумент, исходящий из принятия допущения о дискретности пространства и времени, т. е. допущения о существовании элементарных, далее неделимых, длин и времен.

Стадий . Итак, допустим существование неделимых отрезков пространства и интервалов времени. Рассмотрим следующую схему, на которой каждая клетка таблицы представляет неделимый блок пространства. Имеется три ряда объектов А, В и С, занимающих по три блока пространства, причем первый ряд остается неподвижным, а ряды В и С начинают одновременное движение в направлении, указанном стрелками:

A1 A2 A3
В3 В2 В1
С1 С2 С3

Начальное положение

А1 А2 А3
В3 В2 В1
С1 С2 С3

Конечное положение

Ряд С, утверждает Зенон, за неделимым момент времени прошел одно неделимое место неподвижного ряда А (место А1). Однако за то же самое время ряд С прошел два места ряда В (блоки В2 и В3). Согласно Зенону, это противоречиво, т. к. должен был встретиться момент прохождения блока В2, изображенный на следующей схеме:

В3 В2 В1
С1 С2 С3

Промежуточное положение

Но где в это промежуточное положение находился ряд А ? Для него просто не остается соответствующего места. Остается либо признать, что движения нет, либо согласиться с тем, что ряд А делим не на три, а на большее количество мест. Но в последнем случае мы вновь возвращаемся к допущению о бесконечной делимости пространства и времени, снова попадая в тупик апорий Дихотомия и Ахилл . При любом исходе движение оказывается невозможным.

Основная мысль апорий Зенона Элейского состоит в том, что дискретность, множественность и движение характеризуют лишь чувственную картину мира, но она заведомо недостоверна. Истинная картина мира постигается только мышлением и теоретическим исследованием.

Если не вникать в глубину апорий, можно относиться к ним свысока и удивляться, как это Зенон не додумался до очевидных вещей. Но о Зеноне не перестают спорить, а история науки показывает, что если о чем-то долго спорят, то это, как правило, не зря. Несомненно, размышления над апориями помогли создать математический анализ, сыграли определенную роль в физической революции ХХ века и, вполне возможно, что в физике XXI столетия их значение будет еще более существенным.

III . Парадокс лжеца.

Уже почти две с половиной тысячи лет одной из логических загадок, мучающих людей, пытающихся гармонизировать основания своего мышления, является «парадокс лжеца». Несмотря на то, что в настоящее время известны десятки семантических, логических и математических парадоксов и апорий, «парадокс лжеца» занимает особое место:

- во-первых, он является наиболее доступным из множества парадоксов и, в силу этого, наиболее известным из них.

- во-вторых, он первичен по отношению ко многим другим парадоксам и, следовательно, последние неустранимы, пока не разрешен «парадокс лжеца».

Простейшим вариантом парадокса лжеца является высказывание “Я лгу”. Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжет, он говорит правду, и наоборот.

«Парадокс лжеца» имеет и ряд других похожих друг на друга формулировок. Ниже приведены лишь некоторые из них:

К-во Просмотров: 1097
Бесплатно скачать Реферат: Логические парадоксы