Реферат: Матричные операции в вейвлетном базисе

Вейвлет-преобразование сигналов (wavelet transform), теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.

Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.

Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.

Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.

При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн, коэффициенты разложения по которым сохраняют информацию о дрейфе параметров аппроксимируемой функции. Первые попытки построения таких систем функций сводились к сегментированию сигнала на фрагменты ("окна") с применением разложения Фурье для этих фрагментов. Соответствующее преобразование - оконное преобразование Фурье - было предложено в 1946-47 годах Jean Ville и, независимо, Dennis Gabor. В 1950-70-х годах разными авторами было опубликовано много модификаций времени-частотных представлений сигналов.

В конце 70-х инженер-геофизик Морли (Jean Morlet) столкнулся с проблемой анализа сигналов, которые характеризовались высокочастотной компонентой в течение короткого промежутка времени и низкочастотными колебаниями при рассмотрении больших временных масштабов. Оконные преобразования позволяли проанализировать либо высокие частоты в коротком окне времени, либо низкочастотную компоненту, но не оба колебания одновременно. В результате был предложен подход, в котором для различных диапазонов частот использовались временные окна различной длительности. Оконные функции получались в результате растяжения-сжатия и смещения по времени гаусиана. Morlet назвал эти базисные функции вейвлетами (wavelets) - компактными волнами. В дальнейшем благодаря работам Мейера (Yves Meyer), Добеши (Ingrid Daubechies), Койфмана (Ronald Coifman), Маллы (Stephane Mallat) и других теория вейвлетов приобрела свое современное состояние.

Среди российских ученых, работавших в области теории вейвлетов, необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.

1. Многомасштабный анализ и вейвлеты

Определение 1. Многомасштабный анализ (multiresolutional analysis) – разложение гильбертова пространства L2 (Rd ), d³1, в последовательность замкнутых подпространств

, (1.1)

обладающих следующими свойствами:

1. , и полно в L2 (Rd ),

2. Для любого fÎ L2 (Rd ), для любого jÎ Z, f(x)ÎVj тогда и только тогда, когда

f(2x) ÎVj-1 ,

3. Для любого fÎ L2 (Rd ), для любого kÎ Zd , f(x)ÎV0 тогда и только тогда, когда f(x-k)ÎV0 ,

4. Существует масштабирующая (scaling) функция jÎV0 , что {j(x-k)}kÎZ d образует

базис Ритца в V0 .

Для ортонормальных базисов можно переписать свойство 4 в виде:

4’. Существует масштабирующая функция jÎV0 , что {j(x-k)}kÎZ d образует ортонормальный базис в V0 .

Определим подпространство Wj как ортогональное дополнение к Vj в Vj-1 ,

, (1.2)

и представим пространство L2 (Rd ) в виде прямой суммы

(1.3)

Выбирая масштаб n, можем заменить последовательность (1.1) следующей последовательностью:

(1.4)

и получить

(1.5)

Если имеем конечное число масштабов, то, не нарушая общности, можно положить j=0 и рассматривать

, V0 Î L2 (Rd ) (1.6)

вместо (1.4). В числовой реализации подпространство V0 конечномерно.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 687
Бесплатно скачать Реферат: Матричные операции в вейвлетном базисе