Реферат: Нахождение кратчайшего пути

ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ

Факультет заочного и послевузовского обучения

Курсовой проект

По дисциплине: «Технология программирования»

Тема: « Определение кратчайшего пути в графе »

Воронеж 2004 г.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ.. 3

1. Теория Графов. 4

1.1. Историческая справка. 4

1.2. Основные термины и теоремы теории графов. 9

2. Задачи на графах. 15

2.1. Описание различных задач на графах. 15

2.2. Нахождение кратчайших путей в графе. 16

3. Программа определения кратчайшего пути в графе.. 19

3.1. Язык программирования Delphi. 19

3.2. Программа «Определение кратчайшего пути в графе». 20

ЗАКЛЮЧЕНИЕ.. 25

СПИСОК ЛИТЕРАТУРЫ... 27

ПРИЛОЖЕНИЕ.. 28

Текст программы определения кратчайшего пути в графе. 28


ВВЕДЕНИЕ

Начало теории графов как математической дисциплины было положено Эйлером в его знаменитом рассуждение о Кенигсбергских мостах. Однако эта статья Эйлера 1736 года была единственной в течение почти ста лет. Интерес к проблемам теории графов возродился около середины прошлого столетия и был сосредоточен главным образом в Англии. Имелось много причин для такого оживления изучения графов. Естественные науки оказали свое влияние на это благодаря исследованиям электрических цепей, моделей кристаллов и структур молекул. Развитие формальной логики привело к изучению бинарных отношений в форме графов. Большое число популярных головоломок подавалось формулировкам непосредственно в терминах графов, и это приводило к пониманию, что многие задачи такого рода содержат некоторое математическое ядро, важность которого выходит за рамки конкретного вопроса. Наиболее знаменитая среди этих задач–проблема четырех красок, впервые поставленная перед математиками Де Морганом около 1850 года. Никакая проблема не вызывала столь многочисленных и остроумных работ в области теории графов. Благодаря своей простой формулировке и раздражающей неуловимости она до сих пор остается мощным стимулом исследований различных свойств графов.

Настоящее столетие было свидетелем неуклонного развития теории графов, которая за последние десять – двадцать лет вступила в новый период интенсивных разработок. В этом процессе явно заметно влияние запросов новых областей: теории игр и программирования, теории передачи сообщений, электрических сетей и контактных цепей, а также проблем психологии и биологии.

Вследствие этого развития предмет теории графов является уже обширным, что все его основные направления невозможно изложить в одном томе. В настоящем первом томе предлагаемого двухтомного труда сделан акцепт на основные понятия и на результаты, вызывающие особый систематический интерес.

По теории графов имеется очень мало книг; основной была книга Д. Кёнига (1936), которая для своего времени давала превосходнейшее введение в предмет. Довольно странно, что таких книг на английском языке до сих пор не было, несмотря на то, что многие важнейшие результаты были получены американскими и английскими авторами.

1. Теория Графов.

1.1. Историческая справка.

ТЕОРИЯ ГРАФОВ - это область дискретной матема­тики, особенностью которой является геометрич еский подход к из учению объектов. Теория графов находится сейчас в самом расцвете. Обычно её относят к топологии (потому что во многих случаях рассматриваются лишь топологические свойства графов), однако она пересекается со многими разделами теории множеств, комбинаторной математики, алгебры, геометрии, теории матриц, теории игр, математической логики и многих других математических дисциплин. Основной объект теории графов-граф и его обобщения.

Первые задачи теории графов были связаны с решением математических развлекательных задач и головоломок (задача о Кенигсбергских мостах, задача о расстановке ферзей на шахматной доске, задачи о п еревозках, задача о кругосветном путешестви и и другие). Одним из первых результатов в теории графов явился критерий существования обхода всех ребер графа без повторе­ний, полученный Л. Эйлером при реше­нии задачи о Кенигсбергских мостах. Вот пересказ отрывка из письма Эйлера от 13 марта 1736 году: ” Мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто 7 мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не смог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел лёгкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может“. Кенигсбергские мосты схематически можно изобразить так:

Правило Эйлера:

1. В графе, не имеющем вершин нечетных степеней, существует обход всех рёбер (причем каждое ребро проходится в точности один раз) с началом в любой вершине графа.

2. В графе, имеющем две и только две вершины с нечетными степенями, существует обход с началом в одной вершине с нечетной степенью и концом в другой.

3. В графе, имеющим более двух вершин с нечетной степенью, такого обхода не существует.

Существует еще один вид задач, связанных с путешествиями вдоль графов. Речь идёт о задачах, в которых требуется отыскать путь, проходящий через все вершины, причем не более одного раза через каждую. Цикл, проходящий через каждую вершину один и только один раз, носит название гамильтоновой линии( в честь Уильяма Роуэна Гамильтона, знаменитого ирландского математика прошлого века, который первым начал изучать такие линии). К сожалению, пока еще не найден общий критерий, с помощью которого можно было бы решить, является ли данный граф гамильтоновым, и если да, то найти на нём все гамильтоновы линии.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 579
Бесплатно скачать Реферат: Нахождение кратчайшего пути